DM-003-006404

Seat No.

Second Year B. Sc. (Bioinformatics) (Sem. IV) (CBCS) Theory Examination

April / May - 2015

B. Sc. BI-404: Genetic Engineering

Faculty Code: 003 Subject Code: 006404

Time: Hours] [Total Marks:

		SECT	YON	- I				
1	Plas	Plasmids are supercoiled with the help of						
	(a)	Helicase	(b)	DNA gyrase				
	(c)	Topoisomearase	(d)	None				
2		are responsible for	r tran	sfer of genes during conjugation				
	(a)	crp genes	(b)	tra genes				
	(c)	cro genes	(d)	trp genes				
3		is the restriction	site	of EcoRI				
	(a)	GAA/TTC	(b)	G/AATTC				
	(c)	GA/ATTC	(d)	GAAT/TC				
4	v -	e II Restriction are get sequence		_enzymes and have				
	(a) Two enzymes, symmetrical sequence							
	(b)	One enzyme, symmetrical sequence						
	(c) Two enzymes, asymmetrical sequence							
(d) One enzyme, asymmetrical sequence								
DM-	-003-	006404 1	1	[Contd				

	(a)	Ligase	(b)	Kinase					
	(c)	Polymerase	(d)	Reverse	Transcripta	ise			
6	Pyro	osequencing is based on							
	(a)	Radioactivity							
	(b)	Fluorescence dye							
	(c)	Carbon 14							
	(d)	Express Electromagnetic field							
7	Mut	tagenesis is done to							
	(a)	Recombine the DNA							
	(b)	Insert the new fragmen	\mathbf{t}						
	(c)	the gene							
	(d)	Analyse the clone							
8	Yeas	st two hybrid system is useful for							
	(a)	Replication studies							
	(b)	Protein synthesis studie	\mathbf{s}						
	(c)	Protein- protein interact	tion s	studies					
	(d)	All of the above							
9	For	ligase chain reaction following is not true							
	(a)	In this Ligase is added							
	(b)	In this Polymerase is u	sed						
	(c)	In this Polymerase is n	ot us	sed					
	(d)	This is used for analysi	ng n	nutation					
DM-	003-0		2			[Contd			

Taq is the name of

5

10	In PCR there are									
	(a)	Two primers complementry to each other are used								
	(b)	Only one primer is used								
	(c)	Two primers complementary to each strand is used								
	(d)) None of the above								
11	Fur	actions of a probe								
	(a)	Identification of gene	(b)	Forensic science						
	(c)	Molecular marker	(d)	All of above						
12	Exc	onuclease means cutting	the r	nucleotides from						
	(a)	One end of DNA								
	(b)	Both ends of DNA								
	(c)	Within the DNA								
	(d)	None								
13	RE	is required in								
	(a)	Probe detection	(b)	RFLP						
	(c)	RAPD	(d)	All of the above						
14	Kin	ase helps to								
	(a)	Add phosphate group	(b)	Remove ketone						
	(c)	Add ketone	(d)	None of the above						
DM-003-006404]		3		[Contd						

15	Follo	llowing is not true for High throughput screening								
	(a)	It is manual								
	(b)	It is used for genetic engineering								
	(c)	Robotics is one of its principles								
	(d) All of the above									
16	A sı	mall, circular DNA mole	ecule	used as a vector to transmit						
	fore	ign DNA is a:								
	(a)	Plasmid	(b)	Prion						
	(c)	Liposome	(d)	Lipofectin						
17	Lipo	ofection is a type of								
	(a)	Cloning technique								
	(b)	Vector								
	(c)	Gene transfer technique								
	(d)	Blotting technique								
18	Phe	enol, chloroform and water solution is used for								
	(a)	Dissolving DNA	(b)	Phase differentiation						
	(c)	Chelating process	(d)	None of the above						

4

[Contd...

DM-003-006404]

19	λ DNA is DNA of								
	(a)	Plas	mid	(b)	Cosmid				
	(c)	Bact	eriophage	(d)	BAC				
20	Competent cell formation is the step of								
	(a) Conjugation								
	(b) Transformation								
	(c)	RE							
	(d)	Agai	rose gel electrophore	esis					
			SECTI	ON	П				
			SECII	ON .	- 11				
1	(A)	Ans	wer any three of t	he fo	ollowing 2×3=6				
		(a)	Define sequencing.						
		(b) Enlist all gene transfer techniques.							
		(c)	What are DNA are	rays?					
		(d)	What is a phage w	vrite	its types?				
	(e) What is a probe?								
	(f) Define cDNA library.								
DM-	.003-4	በበፍ⊿በ	4 1	5	[Contd				

	(B)	Ans	3×3=9				
		(a)	Write a note of phosphatase.				
		(b)	Describe plasmid as cloning vector.				
		(c)	Explain chromosome walking.				
		(d)	How mutagenesis helps for analysis of recombinant DNA?				
		(e)	What are expression systems? Give its applications	3.			
		(f)	What are ligases? What role does it plays in genetic engineering?	ıc			
	(C)	Ans	swer any two of the following 5	×3=10			
		(a)	Action mechanisms of Kinases and phosphatase	s.			
		(b)	Any two sequencing techniques.				
		(c)	Enlist different steps of PCR, its types and applications				
		(d)	(d) Molecular diagnostics for high throughput screening				
		(e)	Plasmid DNA isolation.				
2	(A)	Ans	ewer any three of the following	2×3=6			
		(a)	Define genetic engineering.				
		(b)	Define RFLP.				
		(c)	What is a shuttle vector?				
		(d)	What is cloning?				
		(e)	(e) Write four examples of heat stable polymerases.				
		(f)	Write types of nucleases with examples.				

(B) Answer any three of the following

 $3\times3=9$

- (a) Enlist all applications of probe
- (b) Enlist all types of polymerases and write its function
- (c) Explain all chemical techniques for gene transfer
- (d) What are the general steps of genomic DNA isolation?
- (e) What is polymerase chain reaction?
- (f) Write about *E.coli* & animal cells as cloning hosts
- (C) Answer any two of the following
 - (a) Probe construction
 - (b) R M systems
 - (c) Steps of genetic engineering
 - (d) YACs & BACs
 - (e) Yeast two hybrid system